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This paper presents further generalizations of the advection algorithm described in J. Com- 
put. F’hyx (54 (1984), 325). Time-dependent velocity tieIds and a generalized form of the con- 
tinuity equation are considered. Applicability of the algorithm to the diffusion equation and IO 
the transport of nonpositive scalars is also discussed. Theoretical considerations are illustrated 
through numerical tests and applications to some particular geophysical fluid dynamics 
problems. rc’ l9S6 Academic Press, Inc. 

1. INTRODUCTION 

Smolarkiewicz [ 181 described a class of fully multidimensional, nonlinear, com- 
putationally efficient positive delinite advective transport algorithms based upon an 
iterative application of the “upstream” scheme. It was shown that the method 
allows one to construct an algorithm with optional accuracy providing one 
assumed a time-independent velocity field. The simplest version of the developed 
schemes was second-order-accurate in both time and space. The most accurate ver- 
sion tested in [18] was third-order-accurate in time and space. The main idea of 
the algorithm may be summarized as follows. Take any consistent and stable advec- 
tion scheme and apply a Taylor series expansion to its terms to determine the 
analytical form of the truncation error to the desired order of accuracy. After the 
first application of the advection scheme in flux form, the truncation errors are cast 
into similar flux form by detining “truncation-error” velocities. The advection 
scheme is reapplied using the “truncation-error” fluxes which are based upon the 
most recent values of the scalar. The time step is reversed in sign with the effect of 
subtracting off a major portion of the leading truncation errors associated with the 
lirst step. Such a procedure may be repeated an optional number of times. In [ 181, 
where this method has been applied to the “upstream” scheme, the “truncation- 
error” velocities were called “diffusive” velocities because of the diffusive character 
of the leading term in truncation error. In principle the same procedure can be 
applied to any known advection scheme. In [18] it was shown that the algorithm’s 
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accuracy is primarily determined by the order of truncation of the Taylor series 
expansion applied in the first stage of the formal procedure. It has also been shown 
that each consecutive iteration improves the accuracy of the scheme. The developed 
algorithm possesses all of the useful properties of the originally specified “upstream” 
scheme, i.e.> stability, consistency, and conservation of positive definiteness while it 
does not suffer from excessive numerical diffusion. 

In the current paper we further develop the algorithm by extending it for the dif- 
fusion equation and for a generalized form of the continuity equation We also dis- 
cuss the case of a time-dependent velocity field. Although in [lS, Sect. 5.2] the 
inclusion of the corrections associated with time dependence of the veiocity field 
was discussed, we present here an alternative solution of the problem. This new 
solution seems to us to be much simpler and more ethkient, and results in an 
algorithm which is second-order-accurate in time and space for any advective 
velocity field (even time-dependent divergent flow). Ckily second-order Taylor series 
truncation errors are considered in this paper. 

In Section 2 of this paper a brief description of the basic algorithm will be presen- 
ted and in Section 3 further developments of the scheme will be described. In Sec- 
tion 4 the applicability of the algorithm to the transport of the scalar which is not 
positive delinite will be discussed and further considerations on the algorithm’s 
accuracy will be included. In Section 5 an application of the algorithm to some 
geophysical fluid dynamic problems emphasizing the theoretical points discussed in 
Sections 3 and 4 will be presented. 

2. DESCRIPTION OF THE BASIC FORM OF THE ALGORITHM 

The basic equation to be solved is the continuity equation describing transport ol 
a nondiffusive scalar quantity in M-dimensional space 

$f$J~~d)=O (1) 
, 

where $ = t,k( l, x’~..,, .?j is the nondiffusive scalar quantity, assumed to be non- 
negative; u’= 22(l, X’ . , .., Y”) is the Zth velocity component, 1= l,..., M; and tY .Y z 
(xl,..., .P) are the time- and space-independent variables. For compactness of the 
numerical equations we will use the same notation as in [18]: 

$; is a numerical approximation of the solution of Eq. (l)? defined in points 
if”, xi), where tn = n At, xi = (i’ AX’, i2 AX’,..., i,‘f LIJV”)~ n = Oy . . . . NT: ii = O,.~., NP 
and AX’ is the constant spatial increment in the Zth direction. In this paper the 
indices described by capital letters always indicate vector components whereas the 
indices described by lowercase letters indicate grid positions. 

e, = (0,O ,..., 0, I, 0 ,..., 0) is a unity vector in the Jth direction; 

‘q+ , qe, is the 1th velocity component in the H th time step detined on a 
staggered grid (the 1th component is staggered 0.5 AJ? in the 1th direction). 

581 ‘67,2-l! 
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The basic algorithm, i.e., second-order-accurate in time and space for a time- 
independent nondivergent velocity held, may be compactly written as 

-Jqpy $p-‘, u! 1 e* 3 z n- 1)2tJl (2) 

where F’ is the advective flux in the Ith direction evaluated in the same staggered 
points as the Ith velocity component and defined as 

k= l,.... IORD numbers the corrective iterations $!*I such that 

q*F& p , , (4) 
@*F~ #jr+ 1 1 , (5) 

and also, defined for each consecutive iteration, “antidiffusive” velocities such that 

The symbolical relationship C(U, tj), appearing in (6), is explicitly written as 

where 

and .s is a small value, e.g., lOW”, to ensure Cf = 0 when $I:+~, = $F = 0 or 
$f+ e,+ e, = *:+ e, = $T+ ~,- ~~ = $T- e, = 0. Note that, in general, s may be depen- 
dent upon the precision of calculations. Equations (8) and (9) are the numerical 
representations of the analytically developed formulas [ 18, Sect. 21. Note that when 
IORD = 1 the algorithm results in the common first-order-accurate “upstream” 
scheme. For details on the derivation of the algorithm as well as a discussion of 
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consistency, stability, and accuracy, interested readers are referred to Smolarkiewicz 
[18]. fn [18] it was shown for M<3 that the algorithm is stabie if the first 
iteration (“upstream” scheme) is stable. Under the stability criterion 

where 

N;+ l;2,,J = u;+ ,,2e, At,‘AXi (111 

(% = 0.5 for divergent flow held) the scheme maintains positive definiteness of the 
initial condition. 

3. FURTHER DEVELOPMENTS OF THE SCHEME 

3.1. Time- Depemierzt Velocity Field 

When the time-dependency of velocity field is taken into account tben the 
aigorithm (2)-(g) does not compensate 

which appears as a truncation error (see [ 18, Eqs. (39 ), (7)] ). To compensate this 
term the extension of the “antidiffusive” velocities to 

where the terms which are not written explicitly are the same as in (8), was 
suggested in [I& Sect. 5.21 following the logic of the formai procedure [ 18. 
Sect. 21. Apphcation of (13) to the “antidiffusive” velocities has a serious disadvan- 
tage. Tt is not clear how to approximate the temporal derivative of velocity, except 
in the trivial case of the predetermined velocity field. Furthermore, the application 
of ( 13) to reduce temporal truncation errors results in the introduction of higher- 
order implicit diffusion. A proper solution for the compensation of (12) is trivia! 
and is based on a nontraditional interpretation of the advective fluxes. 

Traditionally interpreted, uncentered in time explicit advection scheme for 
integration of (1 j may be written in a space-continuous form as 

where V G (c?/c?x’,..., c?/‘&Y~). Different spatial discretizations of the flux divergence 
in (14) lead to a variety of uncentered in time advection schemes. Expanding 
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tin+ l(x) in a second-order Taylor series about the point (P, x), and replacing the 
second time derivative by spatial derivatives in (14), results in 

The compensatin of the third term on the left-hand side (1.h.s.) of (15) does not 
represent any special difftculties and may be attained, for example, by appropriate 
finite difference representation of the right-hand side (r.h.s) of (15). The latter leads 
to the well-known Lax-Wendroff type of schemes (cf. Smolarkiewicz [16]). Also, 
the algorithm in (2k(9) compensates this part of the truncation error for any 
arbitrary velocity field (see [18, Eq. (38)] for extension of (8) for the divergent 
velocity field case). The compensation of the second term on the 1.h.s. of (1.5) (this 
term results in (12) in our scheme) may be easily achieved for any finite difference 
representation of the r.h.s. of (15), if the temporal position of the velocity field and 
transported scalar is decoupled as 

Applying the second-order Taylor series expansion about the point (P, x) to both 
sides of (16) results in 

!!k -& 
at 2 

+;AtV.(uV+$))= 

-V(lqb) - v . (; A+) + O(At’). (17) 

The terms of the truncation error associated with the temporal variability of the 
velocity, appearing now on both sides of (17), compensate each other and the tinal 
time differencing in (16) results in 

g + i AtV . (uV . (u+)) = -V . (utj) + O(At’j. (18, 

The latter means that application of the velocity field at the “a + l/2” time position 
in an uncentered in time advection scheme results in elimination of the tirst-order 
truncation error associated with the temporal variability of the velocity field (in 
[ 191, this improvement of accuracy of the one-time-level advection schemes was 
shown explicitly for the multidimensional Lax-Wendroff type of scheme discussed 
in [16]). Thereby, the problem is reduced to that of the time-independent velocity 
field, which for the algorithm discussed has been solved in [18]. Note that the 



POSITIVE DEFINITE ADVECTION SCHEbfF, 11 401 

entire algorithm and developed formulas remain the same except that Eq. (7) takes 
the form 

c - J’ 
4+ 1/2e[ = 

H+ l12Ld;+ ~ ,2~, f 19) 

An application of the original velocity held at the 51 + l/Y time position in the first 
iteration of the algorithm totally compensates the truncation error term m (12). 
This finally results in a second-order-accurate in time and space algorithm for any 
physical velocity held. 

Although we have shown that application of the advective velocity field at the 
intermediate time level improves the accuracy of the scheme, it is an open question 
of how to evaluate ’ + li2u without invoking temporal staggering of the velocity with 
respect to other transported scalar variables. Since (16) was undertaken to 
eliminate the first-order truncation-error term, E+ ‘%I may be expressed by the 
neighboring temporal values of II, and this will not affect the results of our analysis 
if “+ “2u is evaluated with at least O(A?) accuracy. Thus, the time-intermediate 
value of the velocity may be written as 

or as 

or as any interpolation or extrapolation procedure which maintains O(d$ j 
accuracy, e.g.? 

” + li2u/+ ,+, = 0.125( 3 . ” + ‘u;+ , >2e, 

+ 6. “u;+ i;2e, - “- hi+ ,/2eJ + O(Ar3). (2Oc) 

The above result is important for practical applications. Let’s assume, for example? 
that a hydrodynamical model utilizes for the momentum equations Arakawa’s 
spatial difference operators with leapfrog, Adams-Bashforth, or Crank and 
Nicolson time integration scheme (see Orszag [ 111, for discussion of the con- 
sequence of these three approaches), and our scheme for any other transported 
scalar. The use of (20a) or (20b) allows one to consistently couple both algorithms 
for any chosen time integration method of the momentum equation? and for any 
model architecture. The formulas (2Oa-c) are equivalent when the leading trun- 
cation errors in (16) are of interest. However, in general, they may result in different 
restrictions imposed on the time increment due to the stability requirement LJnder 
given temporal and spatial increments, fultilling the stability criterion at P and P ’ 
ensures that it will also be fultilled at r” + ‘I2 rf (20a) is employed. Kn contrast> the 
fact that the stability criterion is fultilled at Y ‘, PF and eventually at rn+ r does not 
necessarily imply that it will be fulfilled at P+ “* when (20b) or (20~) is used. In 
general (20b) may require half and (20~) 0.8 of the time step allowed for (2Oa ) or 
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(7). In Section 4 of this paper we will test (7), (2Oa), (2Ob), and (20~) in an 
application to fluid dynamics. We will show that consistent application of the same 
order of accuracy algorithms for all transported lields may significantly affect the 
quality of physical results. 

3.2. D@sion Equation 

The equation under consideration is 

where K= K(t, x) diffusion coefficient and other symbols are delined in Section 2 of 
this paper. 

In [18] a formal numerical equivalence between diffusion and advection 
equations was demonstrated. Following this idea the diffusive fluxes in (21) may be 
formally written in the form of advective fluxes 

where 

and the diffusion equation (21) is simulated using the advection equation (1) with 
c~’ applied instead of u ‘. This advection equation can then be solved by using, in 
principle, any advection scheme. 

At this point it is important to mention that the velocities IB’ in (23), similar to 
the diffusive velocities ui in [ 18, Eq. (lo)], are not well-defined in a local sense for 
$ = 0 and a@/a,yr#O. Elegant mathematical detinition of those velocities would 
need to involve the theory of distributions and reformulation of the delinition (23) 
in a sense of the global analysis, which is beyond the scope of the present paper. 
However, the potential difhcuhies with formulation (23) are only formal. In the 
next stage of the procedure we introduce the fmite difference representations of all 
analytical expressions. The velocities U’ take the form 

assuming K delined at the same position as +. Note that advective fluxes Fr in (3) 
are consistent with the diffusive flux appearing on the 1.h.s. of Eq. (22) when 
AX’-+ 0. Due to the positive dehniteness of the transported scalar 
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which means that situation where $ = 0. 8$/&r # 0 never occurs in the linite dif- 
ference representation of ~JI. The small constant s has no importance beyond allow- 
ing one to code and store (24) for the case when iji + ~, = iji = 0. Also due to the 
positive definiteness of ij, the partial Courant number for velocities FIJI is bounded 
independently on the behavior of $ within the AX’ increment. 

(K if not originally defined in i + 1/2e[ position can always be expressed as a linear 
combination of surrounding values). 

Using (26), and thereby eliminating dependence of the partial Courant number 
on the transported scalar? the stability criterion (10) applied to velocities m’ takes 
the form 

In (27) we recognize the well-known stability criterion for the forward in time 
and centered in space (FTCS) scheme for the diffusion equation. In [ 181 it has 
been emphasized that a sufficient stability criterion for the “upstream” scheme 
requires the value of the constant in (10) to be equal to l/2 for a divergent velocity 
field. Because the diffusive velocity field mf is divergent, the constant $9 in (27) has 
to be kept at 0.5. This twice stronger restriction, while compared with FTCS dif- 
fusion scheme, imposed on the stability criterion is only marginally disadvan- 
tageous. Because of the *‘overdamping” effect (the highest frequency Fourier com- 
ponents change sign after a time step) associated with FTCS diffusion scheme for 
0.5 < %? < 1 the constant %? in (27) is usually kept below l/2 in application to 
hydrodynamical probiems. (The latter prevent a model to develop regions of 
numerically generated buoyancy.) Although “overdamping” does not affect the 
stability of FTCS, it may, however, lead to the instability of the entire model 
especially when the moisture is taken into consideration. When our advection 
algorithm is applied to the case of the diffusive velocity field mf, “overdamping” 
turns to linear instability because of negatives appearing in the solution due to rbe 
velocity field divergence. 

Expressing diffusive fluxes in the form of the advective fluxes (Eq. (22)) by 
introducing the diffusive velocities has important advantages. once the velocity Geld 
c~’ (Eq. (24)) is delined the advection-diffusion equation 

may be written in the simplified advective form 
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and solved with one consistent algorithm. All possible options of the algorithm are 
applicable, which allows one to obtain, in principle, a solution that is second-order- 
accurate in time (cf. FTCS, which gives only lirst-order-accurate in time solution) 
and space. Here we assume only second-order Taylor series expansion for trun- 
cation-error analysis. However, in practical applications, especially where the dif- 
fusive terms appear as a result of subgrid-scale processes parameterizations, we 
avoid complications and expenses associated with compensation of those terms of 
truncation error which are proportional to divergence and temporal derivative of 
the diffusive velocity UJ. In such a case, both FTCS and the present algorithm have 
0(Ar) leading errors. 

For purposes of illustration we consider the external diffusion of the scalar $ for 
a sphere of radius R, discussed, e.g., in [ 15, Sect. 2.21 in relation to water drop 
evaporation. The equation to be solved is the 3-dimensional case of (21). Assuming 
constant diffusion coefficient K, spherical symmetry, and initial-boundary con- 
ditions 

*=o for r>Randt=O, 

*=tio for r<RandtaO, 
(30) 

the diffusion equation (21) has an analytical solution 

where 

The characteristic time r of this diffusion process is delined as the time at which 
the flux of substance $ at r = R, integrated over the sphere’s surface, is equal to 
twice its asymptotic value (at t = m). According to [ 151 

The numerical solutions were obtained by using FTCS diffusion scheme and the 
basic version of the multidimensional advection transport algorithm (2)-(9 j with 
IORD = 2. Both solutions are Iirst-order-accurate in time (uf is time dependent and 
divergent) and second-order-accurate in space. The number of grid points chosen 
was 41 in each direction with AX1 =dX2=AX3 =2.5, t=O.5, K= 1, $. = I, and 
radius of the sphere R= 15. Constant G$ in stability criterion (27j was then 0.24. In 
Fig. 1 the XZ cross section, Y= the middle of the domain, of the solution after 3r 
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Y=MlDDLE OF THE D0MfllN 
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FIG. 1. X.2? cross section of the normalized field diffusing out of the sphere. Contour intervai is 0.5s. 
See text for further details. 

is shown for the basic version of the algorithm. The other cross sections (XY and 
KZ) are identical= The solution for FTCS scheme is not shown because it is almost 
the same as that shown in Fig. 1. The quality of the results was compared by 
examination of the relative error ERR between the numerical and analytical 
sohnions, where ERR is defined as the integral error along the radius of the sphere 

where L is a linear size of the domain. The values of ERR were 0.75.10-I for the 
basic version of the algorithm and 0.80 * 10-l for the FTCS scheme. 

In summary, the results produced by both schemes were approximately the same 
(in contrast, for the one-dimensional diffusion tests FTCS algorithm produced 
slightly better results than the basic version of the algorithm, especially for the short 
integration times). However, it should be remembered that the results obtamed 
from the basic version of the algorithm may be improved by increasing the amount 
of iterations IORD. and/or by including a correction for divergent flow field [18-j, 
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and/or by applying the results of the previous section, or, linally, by using a version 
of the algorithm which is based on the higher-order Taylor series expansion. The 
approach presented here is not considered as a competitive one to other techniques 
for solution of the diffusion equation, but rather as a convenient tool for treatment 
of subgridscale turbulent diffusion parameterization terms. Note that in contrast to 
FTCS scheme, the approach discussed is stable for negative diffusion coellicients. 
This may be advantageous for those subgrid-scale parameterizations which take 
into account countergradient transport of a model variable. 

3.3. Generalized Form of Continuity Equation 

In application to fluid dynamics it is often necessary to solve the modilied version 
cd Eq. (11, 

where f = f(x), and ur is nondivergent. This generalized form of the continuity 
equation can result in a number of ways. A common application for (34) is an 
anelastic model in a Cartesian framework, where f represents vertically variable 
density of fluid, + is a scalar mixing ratio, and u is an “effective” nondivergent 
velocity appearing as a product of actual velocity and $ When the bijective coor- 
dinate transformation is taken into consideration [7], then both for anelastic and 
Boussinesq approximation f becomes the “effective,” spatially variable density of 
fluid (the actual density multiplied by the Jacobian of transformation). For the sim- 
ple one-dimensional model of a plume, f may be interpreted as an area of the 
horizontal cross section of the plume. In the current section we abstract from par- 
ticular applications and simply consider (34) in a mathematical sense. (In Section 5, 
where applications of the algorithm to the modeling of some atmospheric 
phenomena will be discussed, f will have a meaning of the vertically variable density 
of air multiplied by the Jacobian of the transformation to the terrain following 
coordinates [3, 71.) In principle, instead of considering (34) one could redeline a 
transported scalar such that I,$’ = f$ and solve (1) with $’ instead of $. However, 
this may lead to a divergent advective velocity. Also, usage of (34) may be more 
convenient and economical in some model architectures (cf. [3? Sect. 2b, 3b] j, 
especially when the diffusion is included in the velocity held. 

Application of the formal procedure to determine the “antidiffusive” velocities for 
the “upstream” scheme solution of Eq. (34j leads to the modified version of the 
“antidiffusive” velocities Gr (cf. Eqs. (11) and (10) in [ 181) 

gc 
OS[AX’ 124’j - At(d)‘/f] $$ - : 0.5 Atdu-’ --J 

f=I f* 8.X 
if $>O 

f#I (35) 
0 if $=O 
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and consequently to a modified version of Eq. (8) 

where the terms which are not written explicitly are the same as in Eq. (8), and.! is 
assumed to be detined in the same position as rj. The entire algorithm remains the 
same except that Eq. (2) takes the form 

where the omitted terms are the same as in Eq. (2). 
When for any reason, a problem under consideration requires (34) with 

divergent uf, then one can extend (36) by the terms developed in [18, Eq. (38)]- 
consequently divided by fi + riZef. 

4. 0~ THE GENF.RAL APPLICAEILITY OF THE AL~ORRHM 

Requirement of the positive definiteness of the initiai condition for a transported 
scalar is a necessary condition for stability? accuracy? and, generally speaking! for 
design of the algorithm. If the initial condition is positive definite then the 
algorithm will maintain this character, but if for any reason, independent of the 
algorithm, negatives are introduced to the system then the scheme becomes 
unstable immediately. It should be emphasized here that we refer to positive definite 
scalars because of the traditionally addressed geophysical fluid dynamics 
applications. However, the algorithm is also applicable to the transport of the 
negative definite fields. Taking negative s in antidiffusive velocities (8) results in a 
symmetrical scheme which strictly maintains negative definiteness of the initial con- 
dition. The computationally efficient and accurate solution will be discussed further 
in terms of positive definite properties of the scheme, for the sake of simplicity and 
consistency of terminology. However, ail derived results can be symmetrically 
expressed in terms of the negative definiteness. 

For fluid dynamics applications the governing equation (1) is invariant with 
respect to the addition of a constant. Thus, the transport of scalar with variable 
sign may be solved by applying the scheme to the modified field, 
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where constant A is chosen as 

A < min +. (39) 
[%/I 

For stability of the scheme it is enough to require constant A to be equal to the 
global minimum of the transported scalar. However, choosing a smaller A may 
improve the accuracy of the scheme, especially in the neighborhood of local 
minima. 

In contrast to linear schemes this algorithm is not invariant with respect to the 
addition of a constant. Note that “zero” assumed as the minimum of the initial con- 
dition, because of its distinctive properties in the multiplication operation, prevents 
the development of dispersive ripples in the soluGon. The latter effects in main- 
tenance of the positive definiteness. On the contrary, when the minimum of the 
initial condition is greater than zero, then the antidiffusive fluxes in the corrective 
steps of the algorithm do not vanish in the neighborhood of the minimum of the 
initial perturbation, which results in a deepening of the minima (ripples appear) but 
never to a value smaller than zero. The appearance of the dispersive ripples is not 
the only consequence of the choice of the constant .4 in (38). Choice of a large 
negative value of A (relative to the global minimum of $) results in significantly 
improved accuracy of the algorithm. 

FIG. 2. Solution of the solid body rotation test from [ 181 after six revolutions (3768 time steps) 
IORD = 2, large positive constant added to the transported field. 
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In Fig. 2 the solution of our solid body rotation test [ 18, Sect. 4] is shown for 
the IORD = 2 scheme, and constant A = -100 in (38). Note that this solution com- 
pares well with the solution for IORD = 3 and A = 0 [18, Fig. 8]? while it is much 
better than the solution for IORD = 2 and A = 0 [lS. Fig. 71, so long as the 
appearing ripples are not of interest. Moreover, consecutive iterations improve the 
solution only slightly (cf. 3.25 the value of the maximum for IORD = 2 and 3.2g for 
IORD = 3). To explain this behavior of the scheme, associated with choice of the 
constant A in (38), it is convenient to return to our analysis of the truncation error 
[18, Sect. 3, pp. 335-3391. The conditions of the tests remain the same, except that 
the large positive constant is added to the transported Gaussian perturbation. In 
Figs 3 the dependence of the measure of the truncation error (the average per time 
and space step error between the analytical and numerical solution, calculated after 
a lixed time period) on the number of halvings of the time and space increments is 
shown for Courant number 0.5 and IORD = 1 (Sl) to IORD = 8 (S8) schemes. 
Comparing Fig. 3 and [18, Fig. 1] we can see that the truncation error for the 
IORD = 2 scheme decreased dramatically in the current case, Similarly, comparing 
the measure of the truncation error presented for different Courant numbers in 
Fig. 4 with [18, Figs. 3, 4, 5, and 6] we can see that the truncation error for the 

FIG. 3. Dependence of the measure of the truncation error on the number of halvmgs of the grid and 
time increment. The cubes Sl-Sk? represent schemes with IORD = l-8, respectively. Large positive con- 
stant added to the transported field. 
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'Y=LK~ITRUNC. ERROR) 

, , 

FIG. 4. As in Fig. 3 but for IORD = 2 scheme. Curves Cl, C2, and C3 are for CFL = 0.25, 0.5? and 
0.75, respectively. 

IORD = 2 scheme with big absolute value of A in (38) more favorably compares 
with second-order-accurate in time and fourth-order-accurate in space schemes 
than with the scheme which is second-order-accurate in both time and space. Com- 
parison of all referred figures shows that the addition of the large constant to the 
transported field increases the accuracy of the IORD = 2 scheme. 

Better understanding of this fact may be provided by consideration of the follow- 
ing example. Let’s assume for the sake of simplicity that M = 1 in (1 ), u = const > 0 
and that in considered grid points a$/& > 0 (to eliminate absolute values from the 
formulas). The IORD = 2 algorithm may then be written as 

Assuming that @ contains a large constant component, then the very crude 
approximation can be applied to (40b) 

(41) 
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Using (41) the scheme (4Oa, b) may be rewritten in one steps 

In (42) we recognize a second order in time and space one-step Lax-Wendroff 
scheme (also see Leith [9] and Crowley [6] for the considered case of constant 
coeffkients) with additional term which tends to compensate the third spatial 
derivative in Taylor sum expansion when applied to the scheme. The last term on 
the r.h.s. of (42) does not compensate (83tj/8~~3) AX’ terms totally. The latter would 
occur (and result in a third-order-accurate scheme [2O] ) if the coefficient 
,y2(u - 1)/2 beside the third spatial derivative representation would be replaced by 
~(a’ - 1)/6. In Fig. 5 the coeffkient beside the third spatial derivative representation 
from the third-order-accurate scheme (solid line) is compared with the one which 
appears in (42) (short dashes) for Courant numbers between zero and one. For 
purpose of reference the a’/2 coefficient beside the second spatial derivative 
representation (long dashes) is also shown. From Fig. 5 it follows that the curren.? 

0 5 r -’ -1 

FIG. 5. Coeffken& appearing beside the representations of the second (long dashes) and thit-d 
derilzative (short dashes) in Eq. (42) versus Courant number. Solid line represents the coeflicient which 
should appear beside the third derivative to result in a third-order-accurate scheme. 



412 SMOLARKIEWICZ AND CLARK 

approximation in (42) is close to the third-order-accurate scheme, especially for 
Courant numbers larger or equal to 0.5. For ~=0.5 the scheme in (42) becomes 
exactly third-order-accurate in space and time, The latter is consistent with the 
referred analysis of the truncation error presented in [ 18, Sect. 41 and explains the 
slope of the curve S2 in Fig. 3. 

At this point it is important to note that the convergence tests performed for At, 
AX-+0 along constant Courant numbers emphasize the actual size of the trun- 
cation error, which is of interest in practical applications [14] rather than its for- 
mal order of accuracy beyond O(At’, AX’). In [18] the higher number iteration 
schemes were classified as second-order-accurate in time and higher-order-accurate 
in space. It has been pointed out by one of the reviewers that the terminology adop- 
ted was misleading. To avoid ambiguity with respect to the formal delmition of the 
order of accuracy of advection schemes we refer to the basic family of algorithms as 
second-order-accurate in time and space. However, since schemes with different 
numbers of iteration have distinct performances in terms of the overall accuracy, it 
seems appropriate to refer to them as “N-iteration-accurate” versions of the 
algorithm. 

It is common, when discussing numerical schemes, to present a Fourier com- 

FIG. 6. The results of empirical linear analysis applied to (a) 2 AX, (b) 4 AX. (c) 6 A<Y, and (d) 8 AX 
waves. The shortest dashes represent IORD = 1 (upstream) scheme, the longer dashes are IORD = 2 
scheme, the longest dashes are the leapfrog scheme, and the solid line represents the analytical solution, 
CFL = 0.5. 
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FIG. 7. As in Fig. 6 but for CFL =0.X 

FIG. 8. As in Fig. 6 but for CFL = 0.75 
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ponent analysis. Due to the strong nonlinearity of the present scheme we are not 
able to present a formal von Neumann analysis, but using (38) (-4 = -50 chosen) it 
is possible to derive some results about phase and amplitude errors of the scheme 
through comparison of analytical and numerical solutions. 

Figures 6, 7T and 8 show solutions for Courant numbers u = 0.5, 0.25, and 0.75, 
respectively. In each ligure are shown the solutions after 3/a time steps for 2, 4, 6, 
and 8 AX waves. The chosen solutions are “upstream” scheme or IORD = 1 
(shortest dashes), IORD = 2 (longer dashes), leapfrog scheme (longest dashes), and 
analytical solutions (solid lines). Figures 6-8 show that the IORD = 2 algorithm 
strongly “damps” the short 2 AX and 4 AX waves while from wavelength 6 AX on it 
affects the wave amplitude similar to the leapfrog scheme. The dispersion errors of 
the leapfrog scheme can make their solutions appear damped even though they are, 
according to von Neumann analysis, nondiffusive (cf. Roache [14, Sect. 111-A-61). 
These ligures indicate that the phase error of the algorithm is similar (at least with 
accuracy deducted from the plots) to the “upstream” scheme. The latter is impor- 
tant because the %pstream” scheme has the most acceptable phase error behavior 
as compared to the other common schemes (see Boris and Book [2, Sect. III]). In 
summary, the IORD = 2 scheme has an amplitude error comparable to the leapfrog 
scheme while its phase error is comparable to the “upstream” scheme. The strong 
“damping” of the shortest waves has practical advantages. Note that in application 
to fluid dynamics these waves are often filtered. 

5. APPLICATION OF THE ALGORITHM TO THE FLUID DYNAMICS PROBLEMS 

In this section we discuss results from applications of the algorithm to 
hydrodynamical problems. The two-dimensional option of the scheme has been 
applied to the flow of stable dry air over a mountain and to the dynamics of a small 
convective cloud. 

The algorithm (with the developments described in Section 3, Eq. (2Oa) has been 
chosen as a default) was incorporated into the three-dimensional, anelastic, small- 
scale dynamic model with a terrain-following coordinate transformation. The for- 
mulation of the model and detailed description of the numerical methods utilized 
has been given by Clark [3,4]. The generalization of the model for the multi- 
model-interactive-nesting structure was recently described by Clark and Farley [5]. 
The numerical methods used in this model for integration of the transport 
equations of momentum and potential temperature and water vapor mixing ratio 
are the second-order linite difference operators of Arakawa [ 1 ] and Lilly [ 101 for 
the spatial derivative terms and the second-order leapfrog scheme for time differen- 
tiation. The positive definite quantities such as cloud liquid water and rainwater 
mixing ratios are evaluated using a hybrid of Crowley [6] and upstream scheme 
[4] (see also [ 171 for the elementary tests of this scheme). With this version of the 
model, hereafter referred to as “original,” we compare the new version where all 
scalar quantities are integrated using the positive defmite advection transport 
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algorithm. The numerical scheme for the momentum equation remains unchanged 
(note the energy conservation in the model). 

In the current paper we focus our interests on numerical aspects of the model, 
thus we will discuss physical details of the simulated phenomena only to the extent 
necessary to emphasize certain aspects of the numerics. Eecause we mainly repeat 
the calculaGons that were published elsewhere, we accept the former solutions as a 
reference state for our discussion. The readers interested in the physical details of 
the flow over the mountain topic are referred to [3, 5, 12, 131 while the readers 
interested in the dynamics of the small cumulus cloud are referred to [8], where 
they will also tind references to the subject literature. 

5.1. The kfomtain-Forcea’ Gravity Wave Experiment 

The main purpose of this two-dimensional, “dry” experiment is to show that the 
algorithm properly describes the wave development for a forced gravity wave case. 
In the “dry” option of the model the positive definite advection transport algorithm 
is applied only to the transport of potential temperature. A series of simulations 
was employed to test the performance of the scheme. Table I describes the main 
numerical aspects of these experiments. The experiments performed are very similar 
to those presented in [5, 131. Position of the tine-mesh (inner) model (FM) with 
respect to the coarse-mesh (outer) model (CM) is JY’” = 30 km, Z. = 0, unless 
otherwise indicated. The same bell-shaped topography as in [5] was employed 
(h(-~) = ho/[ I + (x’/a)‘], where 1~~ = 0.2 km is the height of the mountain, .Y’ is a 
distance from the center, and a = 3 km), and also the same constant static stability 
of the still atmosphere was assumed (S=~I(ln0j/&= 10P5me’, where /3(z) is a 
potential temperature of the base state). The latter implies a Brunt-V&& fre- 
quency N= 0.99 x lo-’ s ‘. Using the same value of the undisturbed horizontal 
velocity as in [5], U = 4 ms ~ ’ results in the inverse Froude number Nh,JU = 0.495, 
which is small enough ( < 0.85) that freely propagating waves are expected but large 
enough that the nonlinearities due to the surface boundary condition are not 
insignificant. In the last two experiments in Table I the mountain height was 
/I,, = 0.4 km, which resulted in N/z,JU= 0.99. When the inverse Froude number 
exceeds 0.85, one obtains breaking waves. The vertical wavelength of the vertically 
propagating waves estimated from hydrostatic theory is A= = 27cU/N = 2.54 km. 
Thus, as can be seen from Table I, the inner model has 12.7 grid intervals per ver- 
tical wavelength, which is quite good vertical resolution. Similarly as in [5], all for- 
ced gravity wave simulations in this paper are initiated with a potential flow type 
solution and zero initial buoyancy. Also as in [5], a Rayleigh friction absorber has 
been employed in the upper 20 levels of the CM model to avoid reflection of waves 
from the top boundary of the model. The minimum Rayleigh friction time constant 
of 1000 s at the upper boundary was assumed. 

In Figs. 9a and b the vertical velocity field after 6 hours of simulation is shown 
for the EXLI0 experiment for the CM- and FM-models, respectively. Figures IOa 
and b show the sol&on obtained for the new version of the model, EXLI2, which 
according to the analysis, presented in [ 181 and Section 3.1 of this paper, is also 
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FIG. 9. Plots of vertical velocity field at I = 360 min for EXLI0 (-‘original.” second order model j 
experiment. (a) Ch4 model and (b) FM model. The FM model domain is outlined in plate (a j. 
Maximum and minimum values of the field together with the contour interval are indicated on the plot. 
Dashed contours represent negative values whereas solid contours represent positive. No zero contours 
are shown although all contour levels are integral increments from the zero line. 
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0.0 ’ 
30.0 42.0 54 0 f 

XiKMi 
.o 

FIG. 10. As in Fig. 9 but for EXLI2 experiment. The IORD=2 scheme applied for transport of 
potential temperature, Advective velocities at II+ l;& ‘T time level evaluated from Eq. (2Oa). 

second-order-accurate. Comparing Figs. 9 and 10, it is apparent that both solutions 
are in agreement to the level of fine details. Taking into consideration that the tem- 
perature field contains a large constant component, and following the conclusions 
derived in Section 4, we do not expect significant improvement of the results by 
increasing the number of the algorithm iterations (IORD). This is what we observe 
comparing experiments EXLI2 and EXL13. We do not show ligures for EXLI3 
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FIG. 11. As in Fig. 10 but for EXLIl experiment. IORD = 1 scheme applied for :ransport of poten- 
tial temperature. 

because they are indistinguishable from Fig. 10. The differences between vertical 
velocity held for EXLI2 and EXLI3 experiments are confined to the fourth decimal 
places. In contrast, when IORD = 1, EXLIl in Table I, there is a dramatic 
degradation of the overall accuracy. Figures lla and b show the results for this 
first-order solution. 

The purpose of experiments EXLIB, EXLIC, and EXLIT (Table I) is to illustrate 
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0.c 
I 

0.0 24 0 48.0 
Y t K ,I, , 

1 

FIG. 12. .As in Fig. 10 but for EXLIC experiment. Advective velocities at n + 12 time level evaluated 
from Eq. (2Oc ). 

conclusions derived in Section 3.1. In Figs. 12a and b the solutions are shown for 
approximation of “+ lf2u given by (20~). We do not show the equivalent plots for 
EXLIB because they are indistinguishable from Figs. 1Oa and b (EXLI2, n+1/2u 
from Eq. (20a)). The differences between the vertical velocity held for EXL12 and 
EXLIB experiments are confined to the third decimal places. A comparison of the 
results shown in Figs. 1Oa and b with those shown in Figs. 12a and b shows that the 
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FIG. 13. As in Fig. 10 but for EXLIT experiment. Advective velocities taken at rz time level, Eq. (7). 

differences between the solutions reached by using (2Oa) and (20~) are practicahy 
negligible, but that use of (20~) increased slightly the amplitude of the simulated 
gravity waves. The latter may be interpreted as an improvement of the overall 
accuracy. In contrast, when Eq. (7) is applied and advective velocity is taken at %” 
position (like it was in [18], and as it is traditionally recognized for uncentered in 
time schemes), the results of EXLIT (Figs. 13a and b) indicate a significant 
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degradation of the overall accuracy. The effects associated with the reflection of the 
waves from the upper boundary of the CM model are appanmt. At the em-h- times 
of integration (not shown here) these effects were even stronger and resulted in the 
appearance of the spurious short lee-wave packages traveling in the horizontal 
direction. By performing appropriate “single-model” experiments we have verified 
that these results are not related to the model nesting approach. 

The above results seem to have more general implications. Attention is usually 
focused upon the linearized transport problem with steady-state winds even though 
it is well known that truncation errors associated with temporal variability of the 
velocity field have important influences on the overall accuracy of a fluid dynamics 
model. The von Neumann analysis is much easier to apply to problems with 
‘-frozen” velocity lields. Also, the accurate space differencing is often considered to 
be the primary prerequisite of accurate simulations of solutions of multidemen- 
sional partial-differential equations of form (1) (cf. Orszag [ 11, p. 771). Our results 
do not contradict such an opinion (especially when it is understood in the context 
of the computational costs, as in [ill), but indicate the importance of a con- 
sistently accurate evaluation of all variables of the model. The linal accuracy of the 
model may be determined by the most inaccurate algorithm applied, especially 
when this algorithm is applied to a variable which is nonpassive. In our case the use 
of both IORD = 1 and “II resulted in a first-order-accurate advection scheme (in 
time and space, and time, respectively) for the evolution of the potential tem- 
perature. In both cases the accuracy of the linal solution was dramatically degraded 
when compared with a fully second-order model. The degradation of the accuracy 
has been realized in a manner consistent with the leading truncation error. From 
the point of view of the overall accuracy of the results, the errors could be con- 
sidered stronger for IORD = 1 than the 51 case. For example, the alternative use of 
**H + l/2” or “n” position of u has little influence upon the results of the EXLIl 
experiment. The latter is consistent with the opinion quoted above that *‘spatial-dif- 
ferencing is more important than the temporal one” but should not be interpreted 
as negating the fact that both temporal and spatial accuracy of the numerical 
integration of partial-differential equations of type (1) are extremely important for 
the overall accuracy of simulation. 

The purpose of EXNLO and EXNL2 experiments (Table I) was to test the perfor- 
mance of the algorithm in a strongly nonlinear regime of fluid flow. In Figs. 14a and 
b the streamlines after 7 hours of simulation with the original version of the model 
are shown for the CM- and FM-models, respectively. With these figures we com- 
pare Figs. 1.5a and b, where the results of the simulation with the new version of 
model are presented. Even after such a long integration time, we expect there 
should be general properties of the flow that intercompare closely for the forced 
solution. Due to the fact that this is a highly nonlinear problem we also expect that 
there will be differences in the details which have little meaning with respect to the 
general properties of the forced response. For purposes of comparison we have 
marked three streamlines as A, B, and C and two regions as 1 and 2 in Figs. 14b 
and 15b. As discussed in [13] one general feature of the solution is that the first 
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FK;. 14. Plots of stream function field at 420 min for EXNLO {‘~original.” second-order modei) 
experiment. (a) Cbl model and (b) FM model, Streamline markings and region markings are discussed 
in text. 

level of maximum streamline steepening overhead of the mountain results in wave 
energy reflection. This level of reflection first occurs at z = 3/4A= = 1.9 km and is 
marked by a heavy solid dot on YA. This reflected wave energy sets up a strong 
forced gravity wave as clearly evidenced by the path of YA in Fig. 15b. The return 
height position of YB is marked by a circle with a center dot. Streamline !Pc is 
brought down to the surface and remains close to the surface until it returns to a 
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0.0 
0.0 14.4 26.6 43.2 72.0 

YlKMi 

, 

FIG. 1% As in Fig. 14 but for EXNL2 experiment. The IORD = 2 option of the algorithm applied for 
transport of potential temperature. 

higher position near J- = 55 km. This return of Ye is associated with a downstream 
traveling “jump” wave which is set off by initialization. We have arbitrarily detined 
region 1 as that region which possesses near neutral stability between !&, and YB 
and region 2 as a similar region with near neutral stability between !Pn and Yo. 
Due to some slight differences caused by the weaker filtering in EXNLO we have 
drawn in a dashed line to delineate regions 1 and 2 in Fig. 14b. The paths of YC 
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compare exceptionally well between the two experiments. In both experiments 
regions 1 and 2 are similar and contain closed or nearly closed streamlines 
indicative of eddies. There are differences in YA in that a deeper trough occurs in 
EXNLO. If we had chosen a slightly smaller vaiue of YA in EXNL2 then their struc- 
tures could have easily been much more closely matched. Also such a matching of 
PA would shift the horizontal position of the heavy dot closer to that of EXNL0~ 
Overall, the two models are producing results which contain the same basic physics. 
The differences can, we believe, be attributed to differences in the numerical filtering 
between the models. 

We now consider comparisons between the wave-drags and Reynolds stresses for 
the nonlinear forced gravity wave simulation. These types of comparisons are in 
general much better posed than those for the streamlines in the convectively 
unstable region. An important characteristic of the mountain forced gravity wave 
problem is the surface wavedrag, delined as 

where p’ is the pressure perturbation with respect to the hydrostatic environment. 
In Fig. 16 the histories of the wave-drag are shown for the original and new version 
of the FM model, During the first 3 hours of simulation both experiments produce 

FIG. 16. Surface wave-drag versus time for EXNL0 (solid lint) and EXNL2 (dashed he) 
experiments. 
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practically the same histories of wave-drag. Since the effects of wave breaking are 
felt at the surface ( - 3 hours) the two drag histories depart slightly but still remain 
in close agreement. We do not show the equivalent compaixm for the previously 

discussed weakly nonlinear experiments because the drag histories for both versions 
of the model are practically the same and converge to the expected asymptotic 
Long’s type solution. A comparison of the Reynolds stresses exhibited by both 
models showed good agreement. 

The results presented in this subsection give us conlidence that the replacement of 
the centered in time and space second-order-accurate scheme for evaluation of the 
scalar transport by the second-order-accurate positive detinite advection transport 
algorithm does not affect the outcome of the experiments in any sign&ant way, in 
both weakly and strongly nonlinear regimes of flow. As yet, we have not discussed 
advantages of the application of the algorithm and leave it until the complete 
presentation of the algorithm performance in the “moist” case. 

5.2. Simutatfon of the Deuetopment of SmaIt Curn14111s Clouds 

In contrast to the “dry” experiments described in the previous subsection, we will 
discuss here the application of the algorithm to the fluid dynamical case in which 
the water substance is one of the important variables controlling the evolution of 
the entire phenomenon. Similarly as in Section 5.1, the algorithm is employed for 
evaluation of the potential temperature, and additionally for integration of trans- 
port equations of water vapor and liquid water mixing ratios. In contrast to the 
temperature field, the water substance lields do not contain a large constant com- 
ponent (Section 4) and, in general, they appear as positive detinite perturbations. 
Positive detiniteness of the water substance fields is essential for the proper 
evaluation of the phase exchange between vapor and liquid, and linaliy for the 
stability of the entire model. In fact, the water substance lields are those type of 
fields for which the algorithm has been originally designed [17, 181. 

The physical framework and purpose of the experiment are described in detail in 
[8]. The leading idea of the original study was to investigate the tine structure of a 
small cumulus cloud ( - I km across, l&l5 min lifetime) and its interactions with 
its environment. Application of the interactive nesting allowed spatial resolutions 
up to 5 m, within a two-dimensional framework. The development of a cloud, in a 
purposely predetermined still environment, was stimulated by a stationary, 
Gaussian, surface heating of the weakly stable boundary layer. The lirst stage of 
simulation of the development of the convective circulation resulting from the ther- 
mal forcing in the boundary layer was resolved by the coarse-grid, single model. 
After some 30 minutes the rising thermal penetrated the top of the boundary layer 
and initiated condensation. Approximately at this time the inner, tine-grid model 
was “spawned” from the CM lields by using the interpolation schemes described in 
[5]. Further calculations proceeded with two interactive models. The entire cloud 
under study was completely contained in the FM domain. For purposes of dis- 
cussion of the numerical aspects of the original and new versions of the model, we 
have chosen the initial time, to, well exceeding the time of “spawning” of the FM 
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o.o’ 0.0 I .o 2.0 3.0 4.0 5.0 
XIKMI 

FIG. 17. Coarse-mesh model initial condition for all ‘*small cumulus cloufl experiments. (a) Vertical 
velocity field and (b) liquid water content field. The fine-mesh model domain is outlined in plates (a) 
and (b). Here we use the same contouring convention outlined in Fig. 9. 

model. The main reason for such a procedure is that the phenomenon under study 
is strongly physically unstable and undeterministic. The latter is understood in the 
sense that small perturbations imposed on the system may cause completely dif- 
ferent realizations of the phenomenon’s evolution (as discussed in [8], “bifurcated” 
solutions are possible). In the above 
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FIG. 18. As in Fig. 17 but for the fine-mesh model 

one of the possible realizations of the system is established. Table II outlines the 
major characteristics of the various experiments. In Figs. 17a and b the CM model 
initial condition used in all experiments is shown for the vertical velocity and liquid 
water mixing ratio fields. The relative location of the FM and CM modeis is 
indicated in these figures. In Figs. 1Sa and b the same initial fields are shown for the 
FM model. 



430 SMOLARKIEWICZ AND CLARK 

FIG. 19. The solution after w 7 min for EXCL0 (‘.original,” second-order model) experiment. (a) 
Vertical velocity and (b) liquid water content field, 

In Figs. 19a and b the FM model’s lields of vertical velocity and liquid water 
mixing ratio are shown for experiment EXCLO approximately 7 minutes after 
Figs. 17 and 18. In Figs. 20a and b the same fields at the same time are shown for 
experiment EXCL2. In contrast to the -‘dry” experiment described earlier, the dif- 
ferences between the original and the new version of the model are quite apparent. 
Both models simulate the same physical realization of the phenomenon (this is 
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.u 2.2 2 4 2.b 2 8 
r: inw 

FIELD MRX.MlN.DEL 4.X%+00 -3.965E.00 5.CDOL-01 

I .2 I 
2.0 2.2 2.4 2.b 2.8 3 0 

X IKMI 
FIELD I((IX.MIN.OEL 1.408E*OO -1.388E-14 Z.ooof-01 

FIG. 20. As in Fig. 19 but for EXCL2 experiment. IORD = 7 scheme applied for transport of all thcr- 
modynamical \ ariables. 

especially clear when the time sequence of plots like those in Figs. 14 and 20 is 
analyzed [S] ), however, development of the fine details progresses differently in 
both cases. Note, for example, the characteristic “dry pocket” and two small billows 
associated with the “penetrating downdraft” in the upper part of the cIoud for the 
EXCL2 experiment (Figs. 20a and b). The development of the same “dry pocket” 
was observed at earlier times of the EXCLB experiment, but due to the implicit dif- 
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FIG. 21. As in Fig. 20 but for EXCL2c experiment. Compensation of cross-derivative truncation 
error terms arbitrarily removed from the scheme. 

fusion of the hybrid scheme used for the liquid water advection, the pocket dis- 
sipates much faster than in the EXCL2 case. Also, the turret appearing in the center 
of the EXCLO cloud may be an effect of implicit diffusion imposed on the two 
billows which develop in the EXCL2 cloud. This conclusion is supported by the 
results of the EXCL2c experiment (Fig. 21), where the terms compensating the 
truncation error associated with 8*$/8xay ( second term in the r.h.s. of Eq. (8) j were 
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arbitrarily removed from the scheme. The latter results in the introduction of the 
first-order implicit diffusion of type h A~(@/&Y~J~) to the scheme. Comparison of 
the results of EXCL2 and EXCL2c experiments shows that this relatively weak 
implicit diffusion, while compared with the hybrid scheme used in the original 
model, is responsible for faster mixing of the -‘dry pocket,” weaker development of 
the two “billows,” and weaker separation of the “billows” from the cloud top. These 
results indicate that implicit diffusion of the hybrid scheme in the original version of 
model contributes considerably to the differences between EXCL0 and EXCL.2 
experiments. 

From the point of view of questions concerning the physics of the cloud top 
instability, both versions of the model lead to the same conclusions [g], however, 
employment of the positive detinite algorithm eliminates several questions with 
respect to numerical effects. Note that in the new version of the model, ah ther- 
modynamical variables are advected with one scheme, and moreover they are 
advected with the same accuracy as the velocity field. We have shown earlier that 
even relatively weak inconsistencies in accuracy of numerical evaluation of the ther- 
modynamical and kinematical variables may lead to generation of spurious effects 
and noise in the model results. Comparison of the appropriate fields in Figs. 19 and 
20 shows that the results obtained with the positive definite algorithm are substan- 
tially less noisy than the one obtained with the original version of the model. This is 
not surprising. The leapfrog time differencing used in the original mode! for 
mtegration of the water vapor mixing ratio transport equation results in significant 
dispersive ripples and occasionally in negative values of the field. This affects 
buoyancy? then pressure, and finally velocity fields and the entire model rest&s. 
.?dso, the hybrid scheme employed in the original model for evolution of the liquid 
water mixing ratio transport equation is considerably fess accurate than both the 
scheme used for advection of the potential temperature and water vapor mixing 
ratio and the scheme used for integration of the momentum equation. The hybrid 
scheme results in the O(Ar) truncation errors associated with the temporal and 
spatial variability of the velocity field and the errors associated with the mixed 
second spatial partial derivative of the transported field. In regions of strong focat 
gradients of the transported scalar, the hybrid scheme becomes an ‘upstream” 
scheme which additionally increases the tirst-order truncation errors Nothing hke 
that occurs in the new version of the model where all model variables are adverted 
with at least O(Al’, AAr’) accuracy, and where the positive definiteness of the ther- 
modynamical variables is strictly maintained during the entire simulation process. 

The purpose of the EXCLl? EXCL3. and EXCL4 experiments (Table 11,) is 10 
show the impact of the accuracy of the applied algorithm on the model results. 
Note that usually this type of experiment is rather difficult because it requrres sub- 
stantial changes in a model code. In our case? however9 it only requires the 
specitication of the number of algorithm iterations (IQRD). Comparison of 
Figs. 22, 2Q. 23, and 24, which are related to ICIRD = l,,,., 4 accurate versions of the 
algorithm, respectively, clearly shows that increasing the algorithm’s accuracy 
results in the development of finer details of the simulated fields. Simitar1.y as m 
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2.4 

(a) 

FIG. 22. As in Fig. 19 but for EXCLI experiment. IORD = I scheme applied for transport of all ther- 
modynamical variables. 

[18], where the results of the simple solid body rotation tests were analyzed, we 
conclude that the most substantial differences are between IORD= 1 and 
IORD = 2 solutions (Figs. 22 and 20, respectively) and that these differences 
decrease with the increase of IORD. Note that for IORD = 1 the characteristic “dry 
pocket” has become only a cloud center depression bordered by turrets. The effect 
of diffusion is quite clear in these turrets as indicated by the weak gradients of 
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2.2 2 4 2 e p E 
!lt'M~ 

FIELD HRX.WIN.DEL ¶.567E*OO -4.5&E-BO S.OOilE-01 

2.0 2.2 2.4 
X I Kid i 2 ' 

2 ij 3 Cl 

FIELD WX.MlN.OEL 1.58SE40 -6.939E-15 Z.OOOE-01 

FIG. 33. As in Fig. 19 but for EXCL3 experiment. IORD = 3 scheme applied for transport of al! ther- 
modynamical variables. 

liquid water. There is a significant difference between this soIution and the 
IORD = 2 cloud. The differences between IORD = 2 and IORD = 3 solutions 
(Figs. 20 and 23, respectively) manifest further development of the fine structure 
within the “pocket,” billows, and on the entire cloud boundary, but the main 
feature of both solutions remains the same. The differences between IORD = 3 and 
IORD = 4 solutions (Figs. 23 and 24, respectively) are practically negligible. 
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2.c 2.2 2.4 2.b 2.8 
.x: i KM, 

FIELD MFlX.M~N.DEL 1.669E40 -,.3m-I+ *.om-0, 

FIG. 24. As in Fig. 19 but for EXCL4 experiment. IORD = 4 scheme applied for transport of all ther- 
modynamical variables. 

The material presented in this section demonstrates that the positive definite 
algorithm is an accurate and convenient tool for applications to the fluid dynamics 
modeling. With the current structure of the model code, the new version of the 
model requires - 9% more time consumption than the original code for the advec- 
tion calculations. The replacement of the two-time level structure of the tem- 
perature and water vapor mixing ratio fields by the one-time level allows for 
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achievements of the higher spatial resolution. Currently, each iteration of the 
algorithm, including IORD = 1, requires an independent pass through the I0 
scheme associated with the slab structure of the model. Releasing the “upstream*’ 
option of the algorithm and calculation of the IORD = 2 solution within a single 
pass through the data flow should reduce the time consumption of the calculations. 
The algorithm, as described in this paper, has also been applied to the three-dimen- 
sional modeling of the convective cloud field development, and performed satisfac- 
torily while compared with previously obtained results. 

6. CONCLUSIONS 

1~ Further developments of the multidimensionai positive defmite advection 
transport algorithm were presented. The algorithm was generalized for the diffusion 
equation and transport of nonpositive definite quantities and extended to consider 
the generalized transport equation. 

2. Analysis was presented which demonstrated that putting the velocity field at 
the ‘% + l/2” position results in a scheme which is second-order-accurate in time 
and space for any arbitrary velocity field. The importance of a proper time level 
choice for the advecting velocities was demonstrated for a forced gravity wave flow. 

3. In the spirit of the von Neumann type of analysis, pure wave solutions were 
analyzed for the algorithm. Based on the limited series of experiments, it was shown 
that in a first approximation the algorithm may be considered as possessing similar 
amplitude error properties as a centered in time and space leapfrog scheme? and 
similar phase error properties to the regular ‘-upstream” scheme. 

4. In application to the tluid dynamic problems the algorithm appears to be an 
accurate, flexible, and relatively inexpensive tool for the numerical evaluation of 
scalar transport. 
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